
Mastering Linux by Paul S. Wang

Appendix: An Introduction to vim

Creating and editing text files is basic to many tasks on the computer. There
are many text editors for Linux including the GUI-based gedit and the
terminal-based nano, pico, and emacs. However, vim (vi iMproved) re-
mains the editor preferred by many. In any case, pick a text editor and learn
it well. It can make life on Linux so much easier.

To invoke the editor vim for editing file, type from the Shell level

vim file (vim in terminal mode)
gvim file (vim in GUI mode)

If the file exists, vim displays it for editing. Otherwise, you are creating a new
file by that name. In terminal mode, the terminal window and the keyboard are
used for editing, whereas in GUI mode, a window (Figure 2) with a toolbar
and menus is displayed and you can use both the keyboard and mouse for
editing. Information in this section applies also to the vi command and to the

FIGURE 2: Gvim Editing Window

view command which is a read-only version of vi.
Once inside vim, you are working in a text-editing environment controlled

by vim and you can create text, make changes, move text about, and so on.
To exit from vim and save the file with the changes, type the vim command:

ZZ (save file and exit vim)

which makes the changes permanent in the file and terminates vim. If you
want to quit vim without saving the changes, type the vim command:

1



:q! (exit vim, no save)

followed by return.
Let us go through a quick editing session. Type:

vim myprog

to call up a file named myprog. Because myprog does not exist, it will be
created. The screen will clear except for a column of tilde characters (˜), a
cursor, and perhaps a brief message on the last line. The vim editor has
two input modes: the command mode and the insert mode. The command
mode moves the cursor with the arrow keys, deletes text, moves text, and so
on; the insert mode enters and changes text. The vim editor always begins
in the command mode. You enter the insert mode simply by pressing i (for
“insert”, no return is necessary) and you exit insert mode by pressing esc.
This returns you to command mode. Now press i and enter the following text:

echo It is time for all
echo good men to come to
echo the aid of their country.

Type return or enter at the end of a line. This puts a newline character
at the end of the line, which is how Linux text files separate lines. Exit the
insert mode by pressing esc.

If you want to change It is time to Now is the time, the procedure is
simple. Recall that we are in the command mode after pressing esc, so we
may use the arrow keys to move the cursor to the I of It, the beginning of
the first word we want to change. Now press dw, and It is deleted (dw will
be explained shortly). Note how the word disappears and the rest of the line
slides over so that the i in is is now at the cursor. Next, press i to return
to the insert mode and type the word Now, a space, and then esc to exit the
insert mode. We want to insert the word the before the word time, so position
the cursor at the t in time. Now, press i for the insert mode and type the and
a space. Hit esc to return to the command mode. The correction is finished.

New users of vim sometimes find it difficult to always remember
which mode they are using. Vim makes the mode obvious by displaying
-- INSERT -- on the bottom line as a reminder.

As you use vim, any changes you make are only to a buffer. To leave
the editor and save myprog to disk, type ZZ (without hitting return). The
editor will report that it has saved the buffer in a new file named myprog and
then return you to the Shell. You have just created and edited a file named
myprog containing the following three lines:

echo Now is the time for all
echo good men to come to
echo the aid of their country.

2



This file is an actual program consisting of Shell-level commands. Such pro-
grams are called Shell scripts. Shell-level programming is the subject of (Chap-
ter 6). Now type:

chmod +x myprog

to make the file myprog executable. Then type:

./myprog

to execute the simple Shell script.
The vim editor is very powerful, and many different commands are avail-

able to handle all sorts of needs, many of which you may never use. The
following is a list of basic vim commands that will serve most practical pur-
poses:

Cursor Movement
h (or left arrow) moves the cursor one position to the left (Figure 3)
j (or down arrow) moves the cursor down one position
k (or up arrow) moves the cursor up one position
l (or right arrow) moves the cursor right one position
+ (plus sign) moves the cursor to the beginning of the next line (same as

return or enter)
- (minus sign) moves the cursor to the beginning of the previous line
^ moves the cursor to the beginning of the current line
$ moves the cursor to the end of the current line
G moves the cursor to the end of the file
nG moves the cursor to the beginning of the nth line of the file

FIGURE 3: Cursor Movement

Deletion
x erases the character at the cursor; nx erases n characters from the cursor.

The positive integer n is called a repeat number or count. Many of the
commands given here can take a repeat number.

3



ndw deletes n words. As noted previously, the n is a repeat number and may be
omitted if the repeat number is one.

ndd deletes n lines; dd for deleting one line. Where a line is deleted, an @ is
sometimes shown in its place to indicate its absence.

Insertion
i enters the insert mode. Subsequent keystrokes will be inserted immediately

to the left of the cursor. When the insertion is completed, press esc to mark
the end of the insertion and to return to the command mode. An insertion
may consist of more than one line.

a enters the insert mode. a is identical to i, except that the insertion occurs
to the immediate right of the cursor.

Other
/patternesc searches from the current cursor position forward, or down, in the

file to the first occurrence of pattern. For example, /whileesc
searches for the text pattern while. The cursor will be left at the
beginning of the pattern found. Some special characters can be
used to specify patterns. The return key can be used instead of
esc to terminate a search pattern.

?patternesc does the same search in the backward direction toward the begin-
ning of the file.

ZZ saves the file being edited and exits from vim
:q! quits; exits vim without saving the file

The Linux interrupt character (usually ctrl+c) is used to send an inter-
rupt to vim. The interrupt causes vim to abort the current command and
return to the command mode.

Although this section is only an introduction, it should provide enough
material for you to get started editing your files. For more information see the
appendix on vi.

4


